Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
我们直接编写函数d(n),如果d(d(n))=n,并且n!=d(n)那么n就是符合要求的数
我们直接暴力搜索
#include < iostream > #include < cmath > using namespace std; int d( int tmp){ int sum = 0 ; int i; for (i = 1 ; i < sqrt(tmp); i ++ ){ if (tmp % i == 0 ){ sum = sum + i + tmp / i; } } if (i * i == tmp){ sum += i; } return sum - tmp;} int main(){ int sum = 0 ; for ( int i = 1 ; i < 10000 ; i ++ ){ if (i == d(d(i)) && i != d(i)){ sum += i; } } cout << sum << endl; return 0 ;}